Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Biosensors (Basel) ; 13(5)2023 May 15.
Article in English | MEDLINE | ID: covidwho-20235396

ABSTRACT

Since the global outbreak of coronavirus disease 2019 (COVID-19), it has spread rapidly around the world. The nucleocapsid (N) protein is one of the most abundant SARS-CoV-2 proteins. Therefore, a sensitive and effective detection method for SARS-CoV-2 N protein is the focus of research. Here, we developed a surface plasmon resonance (SPR) biosensor based on the dual signal-amplification strategy of Au@Ag@Au nanoparticles (NPs) and graphene oxide (GO). Additionally, a sandwich immunoassay was utilized to sensitively and efficiently detect SARS-CoV-2 N protein. On the one hand, Au@Ag@Au NPs have a high refractive index and the capability to electromagnetically couple with the plasma waves propagating on the surface of gold film, which are harnessed for amplifying the SPR response signal. On the other hand, GO, which has the large specific surface area and the abundant oxygen-containing functional groups, could provide unique light absorption bands that can enhance plasmonic coupling to further amplify the SPR response signal. The proposed biosensor could efficiently detect SARS-CoV-2 N protein for 15 min and the detection limit for SARS-CoV-2 N protein was 0.083 ng/mL, with a linear range of 0.1 ng/mL~1000 ng/mL. This novel method can meet the analytical requirements of artificial saliva simulated samples, and the developed biosensor had a good anti-interference capability.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , SARS-CoV-2 , Gold , Immunoassay/methods , COVID-19/diagnosis
2.
RAIRO: Recherche Opérationnelle ; 57:351-369, 2023.
Article in English | ProQuest Central | ID: covidwho-2320508

ABSTRACT

Information is important market resource. High-quality information is beneficial to increase enterprise's reputation and reduce consumer's verification cost. This paper constructs a two-layer dynamic model, in which enterprises simultaneously conduct price and information game. The goal of profit maximization integrates two types of games into one system. The complex evolution of the two-layer system are studied by equilibrium analysis, stability analysis, bifurcation diagram, entropy and Lyapunov exponent. It is found that improving the information quality through regulations will increase involution and reduce stability of the market. Then, the block chain technology is introduced into the model for improving information quality of the market. It is found that increasing enterprises' willingness to adopt block chain can improve the information quality quickly and effectively, and that is verified by entropy value. Therefore, the application and promotion of new technologies are more effective than exogenous regulations for improving information quality in market.

3.
Sensors (Basel) ; 23(6)2023 Mar 21.
Article in English | MEDLINE | ID: covidwho-2309587

ABSTRACT

DNA has been actively utilized as bricks to construct exquisite nanostructures due to their unparalleled programmability. Particularly, nanostructures based on framework DNA (F-DNA) with controllable size, tailorable functionality, and precise addressability hold excellent promise for molecular biology studies and versatile tools for biosensor applications. In this review, we provide an overview of the current development of F-DNA-enabled biosensors. Firstly, we summarize the design and working principle of F-DNA-based nanodevices. Then, recent advances in their use in different kinds of target sensing with effectiveness have been exhibited. Finally, we envision potential perspectives on the future opportunities and challenges of biosensing platforms.


Subject(s)
Biosensing Techniques , Nanostructures , DNA/chemistry , Nanostructures/chemistry
4.
International Journal of Distance Education Technologies ; 21(2):1-20, 2023.
Article in English | ProQuest Central | ID: covidwho-2298943

ABSTRACT

COVID-19 boosted online teaching and yielded a significant amount of valuable data, yet utilizing it for education is a challenge. This study employed the K-means clustering method to analyze the online teaching behavior data of 1147 courses from a local university in East China. As a result, five types of courses with distinct teaching behaviors were identified: resource preparation (4.1%), online classroom interaction (3.6%), task evaluation (9.2%), active interaction (15.5%), and inactive interaction (67.6%). By examining the relationship between these course types and academic performance, the authors discovered no significant difference in the academic performance of students in the three course groups (i.e., resource preparation, online classroom interaction, and task evaluation) and students in the inactive interaction course group. However, there was a significant disparity in academic performance between students in active interaction courses and students in inactive interaction courses. These findings can assist teachers in planning online teaching activities more effectively and improving teaching outcomes.

5.
IEEE Sens J ; 23(8): 8094-8100, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2297186

ABSTRACT

A new and reliable method has been constructed for detecting severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) open reading frames 1ab (ORF1ab) gene via highly sensitive electrochemiluminescence (ECL) biosensor technology based on highly efficient asymmetric polymerase chain reaction (asymmetric PCR) amplification strategy. This method uses magnetic particles coupled with biotin-labeled one complementary nucleic acid sequence of the SARS-CoV-2 ORF1ab gene as the magnetic capture probes, and [Formula: see text]-labeled amino-modified another complementary nucleic acid sequence as the luminescent probes, and then a detection model of magnetic capture probes-asymmetric PCR amplification nucleic acid products-[Formula: see text]-labeled luminescent probes is formed, which combines the advantages of highly efficient asymmetric PCR amplification strategy and highly sensitive ECL biosensor technology, enhancing the method sensitivity of detecting the SARS-CoV-2 ORF1ab gene. The method enables the rapid and sensitive detection of the ORF1ab gene and has a linear range of 1-[Formula: see text] copies/[Formula: see text], a regression equation of [Formula: see text] = [Formula: see text] + 2919.301 ([Formula: see text] = 0.9983, [Formula: see text] = 7), and a limit of detection (LOD) of 1 copy/[Formula: see text]. In summary, it can meet the analytical requirements for simulated saliva and urine samples and has the benefits of easy operation, reasonable reproducibility, high sensitivity, and anti-interference abilities, which can provide a reference for developing efficient field detection methods for SARS-CoV-2.

6.
Front Microbiol ; 14: 1158163, 2023.
Article in English | MEDLINE | ID: covidwho-2305516

ABSTRACT

Introduction: The ongoing 2019 coronavirus disease pandemic (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants, is a global public health threat. Early diagnosis and identification of SARS-CoV-2 and its variants plays a critical role in COVID-19 prevention and control. Currently, the most widely used technique to detect SARS-CoV-2 is quantitative reverse transcription real-time quantitative PCR (RT-qPCR), which takes nearly 1 hour and should be performed by experienced personnel to ensure the accuracy of results. Therefore, the development of a nucleic acid detection kit with higher sensitivity, faster detection and greater accuracy is important. Methods: Here, we optimized the system components and reaction conditions of our previous detection approach by using RT-RAA and Cas12b. Results: We developed a Cas12b-assisted one-pot detection platform (CDetection.v2) that allows rapid detection of SARS-CoV-2 in 30 minutes. This platform was able to detect up to 5,000 copies/ml of SARS-CoV-2 without cross-reactivity with other viruses. Moreover, the sensitivity of this CRISPR system was comparable to that of RT-qPCR when tested on 120 clinical samples. Discussion: The CDetection.v2 provides a novel one-pot detection approach based on the integration of RT-RAA and CRISPR/Cas12b for detecting SARS-CoV-2 and screening of large-scale clinical samples, offering a more efficient strategy for detecting various types of viruses.

7.
Sens Actuators B Chem ; 374: 132800, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2241175

ABSTRACT

Rapid, convenient and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is urgently needed to timely diagnosis of coronavirus pandemic (COVID-19) and control of the epidemic. In this study, a signal-off photoelectrochemical (PEC) immunosensor was constructed for SARS-CoV-2 nucleocapsid (N) protein detection based on a magnetic all-solid-state Z-scheme heterojunction (Fe3O4@SiO2@TiO2@CdS/Au, FSTCA). Integrating the advantages of magnetic materials and all-solid-state Z-scheme heterostructures, FSTCA was implemented to ligate the capture antibody to form magnetic capture probe (FSTCA/Ab1). It can simplify the separation and washing process to improve reproducibility and stability, while allowing immune recognition to be performed in the liquid phase instead of the traditional solid-liquid interface to improve anti-interference. Besides, the heterojunction inhibited the recombination of photogenerated electron/hole (e-/h+) and promoted the light absorption to provide superior photoelectric substrate signal. The mechanism of photogenerated e-/h+ transfer of FSTCA were investigated by the electron spin resonance (ESR) spectroscopy. SiO2 spheres loaded with Au NPs utilized as an efficient signal quencher. The steric hindrance effect of SiO2@Au labeled detection antibodies (SiO2@Au-Ab2) conjugates significantly diminished light absorption and hindered the transfer of photogenerated electrons, further amplifying the signal change value. Based on the above merits, the elaborated immunosensor had a wide linear range of 10 pg mL-1-100 ng mL-1 and a low detection limit down to 2.9 pg mL-1 (S/N = 3). The fabricated PEC immunosensor demonstrated strong anti-interference, easy operation, and high sensitivity, showing enormous potential in clinical diagnosis of SARS-CoV-2.

8.
Talanta ; 253:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2234287

ABSTRACT

The global corona virus disease 2019 (COVID-19) has been announced a pandemic outbreak, and has threatened human life and health seriously. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as its causative pathogen, is widely detected in the screening of COVID-19 patients, infected people and contaminated substances. Lateral flow assay (LFA) is a popular point-of-care detection method, possesses advantages of quick response, simple operation mode, portable device, and low cost. Based on the above advantages, LFA has been widely developed for detecting SARS-CoV-2. In this review, we summarized the articles about the sandwich mode LFA detecting SARS-CoV-2, classified according to the target detection objects indicating genes, nucleocapsid protein, spike protein, and specific antibodies of SARS-CoV-2. In each part, LFA is further classified and summarized according to different signal detection types. Additionally, the properties of the targets were introduced to clarify their detection significance. The review is expected to provide a helpful guide for LFA sensitization and marker selection of SARS-CoV-2. [Display omitted] • LFA as a simple user friendly tool is widely employed for SARS-CoV-2 detection. • Present review focus on latest developments in LFAs to detect SARS-CoV-2. • Sensitization strategies and marker properties are beneficial to further research. [ FROM AUTHOR]

9.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2237101

ABSTRACT

The rapid identification and recognition of COVID-19 have been challenging since its outbreak. Multiple methods were developed to realize fast monitoring early to prevent and control the pandemic. In addition, it is difficult and unrealistic to apply the actual virus to study and research because of the highly infectious and pathogenic SARS-CoV-2. In this study, the virus-like models were designed and produced to replace the original virus as bio-threats. Three-dimensional excitation-emission matrix fluorescence and Raman spectroscopy were employed for differentiation and recognition among the produced bio-threats and other viruses, proteins, and bacteria. Combined with PCA and LDA analysis, the identification of the models for SARS-CoV-2 was achieved, reaching a correction of 88.9% and 96.3% after cross-validation, respectively. This idea might provide a possible pattern for detecting and controlling SARS-CoV-2 from the perspective of combining optics and algorithms, which could be applied in the early-warning system against COVID-19 or other bio-threats in the future.


Subject(s)
Bacteriophages , COVID-19 , Humans , SARS-CoV-2 , Disease Outbreaks
10.
Heliyon ; 9(2): e13119, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2179061

ABSTRACT

Social distancing has been essential during the COVID-19 pandemic to slow the spread of the disease. Online learning ensures students can participate in learning activities while also maintaining a physical distance from other students. Although online learning was used to prevent the spread of COVID-19, the development of online learning has also been promoted. Here, we sought to explore the perceptions and responses of students to online learning during the pandemic using a cross-sectional study. Electronic questionnaire was used for data collection. Statistical analyses were performed for 1614 valid questionnaires and P < 0.05 was considered statistically significant. Overall, COVID-19 had more effect on female students, such as fear of COVID-19 (2.4 times higher than the number of male students) and length of time spent learning (H = 42.449, P < 0.05). However, the higher the students' grades were, the less the impact of COVID-19. For the style of lessons, all students would prefer shorter lessons (P < 0.05). Female and fifth-grade students were more prefer combined online and face-to-face learning, and male and freshmen students were more likely to prefer face-to-face learning after the pandemic. More than 50% of students thought the main advantage of online learning was convenience, with low efficiency being a disadvantage. The main factors negatively influencing online learning were eyestrain, poor network connections, and poor learning environments at home. In conclusion, synchronous online and face-to-face learning may become more common in future curricula, however the efficiency of online learning and the female students more attentions.

11.
Comput Commun ; 199: 168-176, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2165187

ABSTRACT

In the absence of effective treatment for COVID-19, disease prevention and control have become a top priority across the world. However, the general lack of effective cooperation between communities makes it difficult to suppress the community spread of the global pandemic; hence repeated outbreaks of COVID-19 have become the norm. To address this problem, this paper considers community cooperation in disease monitoring and designs a joint epidemic monitoring mechanism, in which adjacent communities cooperate to enhance their monitoring capability. In this work, we formulate the epidemiological monitoring process as a coalitional game. Then, we propose a Shapley value-based payoffs distribution scheme for the coalitional game. A comprehensive analytical framework is developed to evaluate the advantages and sustainability of the cooperation between communities. Experimental results show that the proposed mechanism performs much better than the conventional non-cooperative monitoring design and can greatly increase each community's payoffs.

12.
Bioelectrochemistry ; 150: 108358, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2165106

ABSTRACT

A sensitive, reliable, and cost-effective detection for SARS-CoV-2 was urgently needed due to the rapid spread of COVID-19. Here, a "signal-on" magnetic-assisted PEC immunosensor was constructed for the quantitative detection of SARS-CoV-2 nucleocapsid (N) protein based on Z-scheme heterojunction. Fe3O4@SiO2@Au was used to connect the capture antibody to act as a capture probe (Fe3O4@SiO2@Au/Ab1). It can extract target analytes selectively in complex samples and multiple electrode rinsing and assembly steps were avoided effectively. CdTe QDs sensitized TiO2 coated on the surface of SiO2 spheres to form Z-scheme heterojunction (SiO2@TiO2@CdTe QDs), which broadened the optical absorption range and inhibited the quick recombination of photogenerated electron/hole of the composite. With fascinating photoelectric conversion performance, SiO2@TiO2@CdTe QDs were utilized as a signal label, thus further realizing signal amplification. The migration mechanism of photogenerated electrons was further deduced by active material quenching experiment and electron spin resonance (ESR) measurement. The elaborated immunosensor can detect SARS-CoV-2 N protein in the linear range of 0.005-50 ng mL-1 with a low detection limit of 1.8 pg mL-1 (S/N = 3). The immunosensor displays extraordinary sensitivity, strong anti-interference, and high reproducibility in detecting SARS-CoV-2 N protein, which envisages its potential application in the clinical diagnosis of COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Cadmium Compounds , Nanocomposites , Quantum Dots , Humans , COVID-19/diagnosis , Electrochemical Techniques , Immunoassay , Limit of Detection , Magnetic Phenomena , Nucleocapsid Proteins , Reproducibility of Results , SARS-CoV-2 , Silicon Dioxide , Tellurium
13.
N Engl J Med ; 385(6): 503-515, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-2160403

ABSTRACT

BACKGROUND: Tirzepatide is a dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1) receptor agonist that is under development for the treatment of type 2 diabetes. The efficacy and safety of once-weekly tirzepatide as compared with semaglutide, a selective GLP-1 receptor agonist, are unknown. METHODS: In an open-label, 40-week, phase 3 trial, we randomly assigned 1879 patients, in a 1:1:1:1 ratio, to receive tirzepatide at a dose of 5 mg, 10 mg, or 15 mg or semaglutide at a dose of 1 mg. At baseline, the mean glycated hemoglobin level was 8.28%, the mean age 56.6 years, and the mean weight 93.7 kg. The primary end point was the change in the glycated hemoglobin level from baseline to 40 weeks. RESULTS: The estimated mean change from baseline in the glycated hemoglobin level was -2.01 percentage points, -2.24 percentage points, and -2.30 percentage points with 5 mg, 10 mg, and 15 mg of tirzepatide, respectively, and -1.86 percentage points with semaglutide; the estimated differences between the 5-mg, 10-mg, and 15-mg tirzepatide groups and the semaglutide group were -0.15 percentage points (95% confidence interval [CI], -0.28 to -0.03; P = 0.02), -0.39 percentage points (95% CI, -0.51 to -0.26; P<0.001), and -0.45 percentage points (95% CI, -0.57 to -0.32; P<0.001), respectively. Tirzepatide at all doses was noninferior and superior to semaglutide. Reductions in body weight were greater with tirzepatide than with semaglutide (least-squares mean estimated treatment difference, -1.9 kg, -3.6 kg, and -5.5 kg, respectively; P<0.001 for all comparisons). The most common adverse events were gastrointestinal and were primarily mild to moderate in severity in the tirzepatide and semaglutide groups (nausea, 17 to 22% and 18%; diarrhea, 13 to 16% and 12%; and vomiting, 6 to 10% and 8%, respectively). Of the patients who received tirzepatide, hypoglycemia (blood glucose level, <54 mg per deciliter) was reported in 0.6% (5-mg group), 0.2% (10-mg group), and 1.7% (15-mg group); hypoglycemia was reported in 0.4% of those who received semaglutide. Serious adverse events were reported in 5 to 7% of the patients who received tirzepatide and in 3% of those who received semaglutide. CONCLUSIONS: In patients with type 2 diabetes, tirzepatide was noninferior and superior to semaglutide with respect to the mean change in the glycated hemoglobin level from baseline to 40 weeks. (Funded by Eli Lilly; SURPASS-2 ClinicalTrials.gov number, NCT03987919.).


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide/administration & dosage , Glucagon-Like Peptides/administration & dosage , Hypoglycemic Agents/administration & dosage , Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Therapy, Combination , Female , Gastric Inhibitory Polypeptide/adverse effects , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptides/adverse effects , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Incretins/therapeutic use , Injections, Subcutaneous , Male , Metformin/therapeutic use , Middle Aged , Nausea/chemically induced , Weight Loss/drug effects
14.
Anal Methods ; 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2151146

ABSTRACT

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seriously threatened global public health. Establishing a rapid and sensitive diagnostic test for early detection of the SARS-CoV-2 nucleocapsid protein is urgently required to defend against the pandemic. Herein, an enhanced lateral flow immunoassay (LFIA) was fabricated by trimetallic Au@Pd@Pt core-shell nanozymes for detection of the SARS-CoV-2 nucleocapsid protein. The Au@Pd@Pt nanozymes (Au@Pd@Pt NZs) synthesized via a one-pot method, with a dendrite morphology and uniform particle size, showed excellent peroxidase-like activity. Due to the perfect enzyme-like catalytic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2), the catalytic signal could be generated even by a tiny amount of Au@Pd@Pt NZs accumulated on the test strip. Therefore, rapid detection with higher sensitivity was achieved. The Au@Pd@Pt NZs-based LFIA provided a quantitative range of 0.05-100 ng mL-1 with a limit of detection of 0.037 ng mL-1, which was 17-fold lower than the LFIA without enhancement. The average recoveries from spiked samples were in the range of 92.5-107.9% with relative standard deviations all less than 4%, indicating the reliability and repeatability of the proposed LFIA. Additionally, the proposed LFIA could report results within 30 min using a microplate reader. In conclusion, the Au@Pd@Pt NZs-LFIA is a rapid, simple, and sensitive method for detecting the SARS-CoV-2 nucleocapsid protein.

15.
Clin Res Hepatol Gastroenterol ; 46(10): 102049, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2104585

ABSTRACT

Acute appendicitis is a common abdominal surgical emergency worldwide. Abraham Groves performed the first documented open appendectomy in 1883. Although appendectomy is still the most effective treatment in cases of acute appendicitis, it causes a range of complications and carries the risk of negative appendectomy. In the awake of covid-19, the latest guidelines recommend antibiotic therapy as an acceptable first line treatment for acute appendicitis. However, patients treated with antibiotics have a recurrence risk of up to 30% at 1 year. Endoscopic retrograde appendicitis therapy (ERAT) has emerged as promising non-invasive treatment modality for acute uncomplicated appendicitis (AUA) which involves cannulation, appedicography, appendiceal stone extraction, appendiceal lumen irrigation, and stent insertion. ERAT aims to relieve the cause of appendicitis (e.g., obstruction or stenosis of the appendiceal lumen) and thus effectively prevent the recurrence of appendicitis. In addition, it can make a definitive diagnosis of acute appendicitis during endoscopic retrograde appendicography. Studies have shown that 93.8 to 95% of AUA patients did not have a recurrence following ERAT. In this study, we aim to summarize the current body of evidence on ERAT to situate it alongside currently established therapies for acute appendicitis, in particular, AUA.


Subject(s)
Appendicitis , COVID-19 , Humans , Appendicitis/drug therapy , Appendicitis/surgery , Acute Disease , Appendectomy , Endoscopy , Anti-Bacterial Agents/therapeutic use
16.
Talanta ; : 124051, 2022.
Article in English | ScienceDirect | ID: covidwho-2086748

ABSTRACT

The global corona virus disease 2019 (COVID-19) has been announced a pandemic outbreak, and has threatened human life and health seriously. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as its causative pathogen, is widely detected in the screening of COVID-19 patients, infected people and contaminated substances. Lateral flow assay (LFA) is a popular point-of-care detection method, possesses advantages of quick response, simple operation mode, portable device, and low cost. Based on the above advantages, LFA has been widely developed for detecting SARS-CoV-2. In this review, we summarized the articles about the sandwich mode LFA detecting SARS-CoV-2, classified according to the target detection objects indicating genes, nucleocapsid protein, spike protein, and specific antibodies of SARS-CoV-2. In each part, LFA is further classified and summarized according to different signal detection types. Additionally, the properties of the targets were introduced to clarify their detection significance. The review is expected to provide a helpful guide for LFA sensitization and marker selection of SARS-CoV-2.

18.
Toxins (Basel) ; 14(10)2022 10 04.
Article in English | MEDLINE | ID: covidwho-2066493

ABSTRACT

With the outbreak and spread of COVID-19, a deep investigation of SARS-CoV-2 is urgent. Direct usage of this virus for scientific research could provide reliable results and authenticity. However, it is strictly constrained and unrealistic due to its high pathogenicity and infectiousness. Considering its biosafety, different systems and technologies have been employed in immunology and biomedical studies. In this study, phage display technology was used to construct a nonpathogenic model for COVID-19 research. The nucleocapsid protein of SARS-CoV-2 was fused with the M13 phage capsid p3 protein and expressed on the M13 phages. After validation of its successful expression, its potential as the standard for qPCR quantification and affinity with antibodies were confirmed, which may show the possibility of using this nonpathogenic bacteriophage to replace the pathogenic virus in scientific research concerning SARS-CoV-2. In addition, the model was used to develop a system for the classification and identification of different samples using ATR-FTIR, which may provide an idea for the development and evaluation of virus monitoring equipment in the future.


Subject(s)
COVID-19 , Viruses , Humans , SARS-CoV-2/genetics , Cell Surface Display Techniques , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism
19.
Anal Chim Acta ; 1233: 340486, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2060277

ABSTRACT

The SARS-CoV-2 pandemic has posed a huge challenge to rapid and accurate diagnosis of SARS-CoV-2 in the early stage of infection. In this work, we developed a novel magnetic/fluorescent dual-modal lateral flow immunoassay (LFIA) based on multifunctional nanobeads for rapid and accurate determination of SARS-CoV-2 nucleocapsid protein (NP). The multifunctional nanobeads were fabricated by using polyethyleneimine (PEI) as a mediate shell to combine superparamagnetic Fe3O4 core with dual quantum dot shells (MagDQD). The core-shell structure of MagDQD label with high loading density of quantum dots (QDs) and superior magnetic content realized LFIA with dual quantitative analysis modal from the assemblies of individual single nanoparticles. The LFIA integrated the advantages of magnetic signal and fluorescent signal, resulting excellent accuracy for quantitative analysis and high elasticity of the overall detection. In addition, magnetic signal and fluorescent signal both had high sensitivity with the limit of detection (LOD) as 0.235 ng mL-1 and 0.012 ng mL-1, respectively. The recovery rates of the methods in simulated saliva samples were 91.36%-103.60% (magnetic signal) and 94.39%-104.38% (fluorescent signal). The results indicate the method has a considerable potential to be an effective tool for diagnose SARS-CoV-2 in the early stage of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Polyethyleneimine , COVID-19/diagnosis , Immunoassay/methods , Magnetic Phenomena
20.
Sensors and actuators. B, Chemical ; 2022.
Article in English | EuropePMC | ID: covidwho-2045638

ABSTRACT

Rapid, convenient and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is urgently needed to timely diagnosis of coronavirus pandemic (COVID-19) and control of the epidemic. In this study, a signal-off photoelectrochemical (PEC) immunosensor was constructed for SARS-CoV-2 nucleocapsid (N) protein detection based on a magnetic all-solid-state Z-scheme heterojunction (Fe3O4@SiO2@TiO2@CdS/Au, FSTCA). Integrating the advantages of magnetic materials and all-solid-state Z-scheme heterostructures, FSTCA was implemented to ligate the capture antibody to form magnetic capture probe (FSTCA/Ab1). It can simplify the separation and washing process to improve reproducibility and stability, while allowing immune recognition to be performed in the liquid phase instead of the traditional solid-liquid interface to improve anti-interference. Besides, the heterojunction inhibited the recombination of photogenerated electron/hole (e-/h+) and promoted the light absorption to provide superior photoelectric substrate signal. The mechanism of photogenerated e−/h+ transfer of FSTCA were investigated by the electron spin resonance (ESR) spectroscopy. SiO2 spheres loaded with Au NPs utilized as an efficient signal quencher. The steric hindrance effect of SiO2@Au labeled detection antibodies (SiO2@Au-Ab2) conjugates significantly diminished light absorption and hindered the transfer of photogenerated electrons, further amplifying the signal change value. Based on the above merits, the elaborated immunosensor had a wide linear range of 10 pg mL−1 -100 ng mL−1 and a low detection limit down to 2.9 pg mL−1 (S/N = 3). The fabricated PEC immunosensor demonstrated strong anti-interference, easy operation, and high sensitivity, showing enormous potential in clinical diagnosis of SARS-CoV-2. Graphical

SELECTION OF CITATIONS
SEARCH DETAIL